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Background



Acceptance sampling plans

� Within-batch sampling

� Compares the level of a microbial hazard detected in a food against a 

pre-specified limit or MC. 

� Regulation EC No.1441/2007

� Based on acceptance sampling plan theory

� By attributes

� Two-class: Ex. L.m. in RTE: n=5, c=0, m=100 CFU/g

� Three-class: Ex. E.coli in minced meat: n=5, c=2, m=50, M=500

� ICMSF spreadsheet: lognormal, constant variance batch to batch

� By variables

� Ex: Enterobact. on pig carcass: n=5, m=2 log, M=3 log CFU/g



Acceptance sampling plans

� Traditionally in acceptance sampling plans:

� True concentration of microorganisms is log-normally
distributed within a batch

� Variance in microbial load is constant batch to batch
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Recent findings (×4)

1) For data consisting of zero-counts (low microbial 

counts), Poisson-gamma (PG) distribution is far 

more suitable than PLN and lognormal
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Recent findings (×4)

2) Within-batch variance is not constant and is 

associated to the within-batch mean
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Recent findings (×4)

2) Within-batch variance is not constant and is 

associated to the within-batch mean
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Recent findings (×4) 

3) The association between WB mean and WB spread 

can be represented well by a Poisson-gamma 

regression model with correlated random effects



Recent findings (×4) 

4) Sampling plans with a ML expressed in arithmetic mean 
(CFU/g) are more effective than those expressed in mean 
log (log CFU/g)
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Recent findings (×4)

4) Sampling plans with a ML expressed in arithmetic mean 
(CFU/g) are more effective than those expressed in mean 
log (log CFU/g)
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generates less uncertainty in 
Pa, and hence causes a SP 
to be more effective.

� The arithmetic mean 
approach produce also 

steeper OC curve � higher 
discriminatory power of  the 
SP

MC: n=5, mL= 82 CFU/cm2



Objective

� This study proposes a novel methodology for the 

statistical derivation of a variable sampling plan for use 

in food production systems whose microbial counts are 

known to be low and can be represented by a Poisson-

gamma model.gamma model.

� Microbial data: Enterobacteriaceae counts on pre-chill 

sheep carcasses (n=400 carcasses, j=20 batches).
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1) Model WB and BW variability in 
microbial counts using Poisson-gamma 
model

� Enterobacteriaceae plate count data: i=400 carcasses, 

j=20 batches

� PG model was fitted� PG model was fitted



1) Model WB and BW variability in 
microbial counts using Poisson-gamma 
model

Poisson-gamma models Mean Standard 

error

Pr>|t| BIC

Correlated random effects for m, k 2588Correlated random effects for m, k

Intercept [log(mean)], Int0

Random effects [log(mean)], σu
2

Intercept [log(k)], Int1

Random effects [log(k)], σv
2

Correlation coefficient, ρ

-

3.514

1.058

0.254

-0.614

-

1.213

0.149

0.093

0.262

-

0.009

<.001

0.048

0.031

2588



1) Model WB and BW variability in 
microbial counts using Poisson-gamma 
model

� The overall PG 

model represents 
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1) Model WB and BW variability in 
microbial counts using Poisson-gamma 
model
� It is possible to 

obtain a universe of 
contaminated batches 
through simulation
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2) Establish a tolerance criterion and 
purpose of the sampling plan

� Decide what makes a 

food unacceptable

� A batch is defined as 

“unacceptable” if 

more than a tolerance 10
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2) Establish a tolerance criterion and 
purpose of the sampling plan

� Purpose of the SP should be known

Producer’s side Consumer’s side

-For control purposes such as adherence 

to GMP limits or SPC

-For safety specifications such as PO’s.

-- Derived on the α risk: probability of  

taking action although the batch is of  

good quality

- The producer requires some confidence 

that good batches will not be rejected

-Critical concentration, Cm

-- Derived on the β risk: probability of  

accepting a batch that in reality is defective

- The consumer requires some confidence 

that bad batches will not be accepted

-Critical concentration, Cs>>Cm



3) Derivation of decision landscape curves

� In our case, SP will be derived on the producer’s side

� Because counts of Enterobacteriaceae are very low.

� The food producer requires some confidence (1-α) that products of 
acceptable quality should not be rejected because of the imprecision of 
the sampling scheme.

� The problem consists of finding a decision criterion

� mL

� n

that satisfies the pre-defined minimum confidence (1-α) 

measured on the samples’ mean distributions.



3) Derivation of decision landscape curves

� A decision landscape curve plots the values of α and β risks for 

different microbiological limits mL at a constant sample size n. 
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3) Derivation of decision landscape curves

� Every ‘true within-batch distribution’ from the universe 

should be converted to ‘sample mean’s distribution’ in order 

to calculate the probability of accepting the batch

mL
Pa

True WB distribution
Gamma (k, m)

Samples’ mean distribution
Gamma (k/n, m)

mL



Results 



Results: Definition of tolerance criterion
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Results: Decision landscape curve

� As mL increases, α risk 
decreases, and β risk 
increases.

� At every mL, we have 
distributions of  
uncertainty of  α and β, 
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Results: Decision landscape curve

� As mL increases, α risk 
decreases, and β risk 
increases.

� At every mL, we have 
distributions of  
uncertainty of  α and β, 
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� Even if  we minimise 
both risks at mL*=9 
CFU/cm2, β risk may 
be still as high as 28%

� Therefore, assess 
higher sample size n.
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Results: Relevant descriptors from the 
decision landscape curve

� When safety of  
production system is 
under control, mL can 
be found at a desirable 
maximum α.
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Results: Effect of sample size
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Results: Possible sampling plans

n mL|(α95pct=0.10) 

(CFU/cm2)

α 

(Mean + 90% CI)

β|mL

(Mean + 90% CI)

5 20.0 0.0160 [0 – 0.10] 0.246 [0 – 0.615]

6 19.5 0.0166 [0 – 0.10] 0.217 [0 – 0.595]

� Derived under the assumption that good batches should be accepted with a 
minimum confidence of  90%

6 19.5 0.0166 [0 – 0.10] 0.217 [0 – 0.595]

8 18.5 0.0172 [0 – 0.10] 0.172 [0 – 0.537]

10 17.5 0.0188 [0 – 0.10] 0.134 [0 – 0.496]

12 17.0 0.0192 [0 – 0.10] 0.115 [0 – 0.461]

14 16.8 0.0198 [0 – 0.10] 0.101 [0 – 0.447]

16 16.5 0.0212 [0 – 0.10] 0.087 [0 – 0.413]

18 16.2 0.0223 [0 – 0.10] 0.077 [0 – 0.381]

20 15.9 0.0231 [0 – 0.10] 0.066 [0 – 0.366]



Results: Possible sampling plans

n mL|(α95pct=0.10) 

(CFU/cm2)

α 

(Mean + 90% CI)

β|mL

(Mean + 90% CI)

5 20.0 0.0160 [0 – 0.10] 0.246 [0 – 0.615]

6 19.5 0.0166 [0 – 0.10] 0.217 [0 – 0.595]

� We may wish to establish that the consumer’s risk should on average be 
0.10.
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8 18.5 0.0172 [0 – 0.10] 0.172 [0 – 0.537]
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Results: Performance of chosen sampling 
plan
� n=14, mL=17 CFU/cm2
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Conclusions

� The proposed methodology proved to be statistically sound:

� It is the first to address the derivation of a sampling plan as a 

classification problem capable of propagating the between-

batch variability

� Adequate for microbial data consisting of many zero counts

� Uses the more effective arithmetic means, compatible with 

the Poisson-gamma



Thank you !!!

Merci beaucoup !!!Merci beaucoup !!!

Gracias !!!


