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Observations, sensitivity and Bayesian inference 
in QMRA 

 
 
 
•Background of the problem: dealing with uncertainty 

and probabilistic inference in RA. 
 

•Two example problems where overall sensitivity of 
surveillance matters.  
 

•Discussion. 
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Engineering example: Falcon HTV-2 hypersonic aircraft 
 
 
• First tested in wind tunnel conditions and computer simulations 

 
– "It's time to conduct another flight test to validate our 

assumptions and gain further insight into extremely high 
Mach regimes that we cannot fully replicate on the ground."  
 

 
– ”We wouldn't know exactly what to expect based solely on 

the snapshots provided in ground testing. Only flight testing 
reveals the harsh and uncertain reality."  

 
   Air Force Maj. Chris Schulz / CBSNEWS 11.Aug.2011. 
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Remarks from Falcon HTV-2: 
 

•  Experimental conditions do not match real situation. 
 

•  Simulations may largely rely on assumptions. 
 

•  Data from actual flight conditions needed! 
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Compare with QMRA on food production chains: 
 

•  Experimental conditions do not match real situation. 
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Compare with QMRA on food production chains: 
 

•  Experimental conditions do not match real situation. 
 

•  Simulations may largely rely on assumptions. 
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Compare with QMRA on food production chains: 
 

•  Experimental conditions do not match real situation. 
 

•  Simulations may largely rely on assumptions. 
 

•  Data from actual production chain needed! 
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Idea (not new, but still…) 

of probabilistic evidence synthesis: 
 
•  Experimental conditions can provide prior information. 

 
•  Assumptions can describe other prior information. 

 
 

•  Data from actual production chain is direct evidence. 
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Another example: controlling FMD outbreak 
 
• ”The models’ veterinary assumptions did not fit with either field or 

experimental reality and represented a different (wholly theoretical) virus”. 
 
• ”The use of non-validated models as predictive tools to guide policy during 

an epidemic of FMD remains highly questionable, especially given the 
imprecision of the available data and the complex nature of the biology of 
FMD virus” 

– Mansley LM, Donaldson AI, Thrusfield MV, Honhold N: Destructive 
tension: mathematics versus experience – the progress and control of 
the 2001 foot and mouth disease epidemic in Great Britain. Rev. sci. 
tech. Off. int. Epiz., 2011, 30 (2), 483-498. 
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Underestimating uncertainty? 
Can these problems be avoided ? 

 
• Experiments are difficult, or impossible, with a real production chain.  

 
– Costs are much too high, consequences irreversible. 
– Can be forbidden by law. 
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Underestimating uncertainty? 
Can these problems be avoided ? 

 
• Experiments are difficult, or impossible, with a real production chain.  

 
• Purely experimental conditions are simplified versions of reality – can we 

extrapolate? 
 

– Infection experiments possible with some inoculated animals under test 
conditions. E.g. hens in cages.  

– Other contamination experiments under ’similar’ conditions. 
– Only limited number of factors can be controlled. 
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Underestimating uncertainty? 
Can these problems be avoided ? 

 
• Experiments are difficult, or impossible, with a real production chain.  

 
• Purely experimental conditions are simplified versions of reality – can we 

extrapolate? 
 

• Real life data from other production systems usually context dependent, 
systems not identical – can we borrow estimates? 
 

– Can data from one slaughterhouse describe those in all EU MSs?  
– Is any study from one country informative of others?  
– Meta analysis methods? 
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Underestimating uncertainty? 
Can these problems be avoided ? 

 
• Experiments are difficult, or impossible, with a real production chain.  

 
• Purely experimental conditions are simplified versions of reality – can we 

extrapolate? 
 

• Real life data from other production systems usually context dependent, 
systems not identical – can we borrow estimates? 
 

• Computer simulations with Monte Carlo methods based on assumptions – 
not (only) estimates from actual field data. 

 
– Assuming e.g. that all practices over the production chain are done according 

to adopted quidelines, protocols and laws.  
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Underestimating uncertainty? 
Can these problems be avoided ? 

 
• Experiments are difficult, or impossible, with a real production chain.  

 
• Purely experimental conditions are simplified versions of reality – can we 

extrapolate? 
 

• Real life data from other production systems usually context dependent, 
systems not identical – can we borrow estimates? 
 

• Computer simulations with Monte Carlo methods based on assumptions – 
not (only) estimates from actual field data. 
 

• Mechanistic modelling aims to replicate reality in detail but will introduce 
lots of uncertain parameters. 
 

– Is every detail needed?  
– Criteria for relevant scope of the model in relation to what is known?  
  model uncertainty!  Model assessment. 
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Underestimating uncertainty? 
Can these problems be avoided ? 

 
• Experiments are difficult, or impossible, with a real production chain.  

 
• Purely experimental conditions are simplified versions of reality – can we 

extrapolate? 
 

• Real life data from other production systems usually context dependent, 
systems not identical – can we borrow estimates? 
 

• Computer simulations with Monte Carlo methods based on assumptions – 
not (only) estimates from actual field data. 
 

• Mechanistic modelling aims to replicate reality in detail but will introduce 
lots of uncertain parameters.  
 

• Simple statistical models do not utilize relevant prior knowledge. 
 

– ’Modeling the data’ vs. ’modeling the problem’? 
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Underestimating uncertainty? 
Can these problems be avoided ? 

 
• Experiments are difficult, or impossible, with a real production chain.  

 
• Purely experimental conditions are simplified versions of reality – can we 

extrapolate? 
 

• Real life data from other production systems usually context dependent, 
systems not identical – can we borrow estimates? 
 

• Computer simulations with Monte Carlo methods based on assumptions – 
not (only) estimates from actual field data. 
 

• Mechanistic modelling aims to replicate reality in detail but will introduce 
lots of uncertain parameters.  
 

• Simple statistical models do not utilize relevant prior knowledge. 
 

• Models may not be valid, but do we have valid data either? 
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Underestimating uncertainty? 
Can these problems be avoided ? 

 
• Experiments are difficult, or impossible, with a real production chain.  

 
• Purely experimental conditions are simplified versions of reality – can we 

extrapolate? 
 

• Real life data from other production systems usually context dependent, 
systems not identical – can we borrow estimates? 
 

• Computer simulations with Monte Carlo methods based on assumptions – 
not (only) estimates from actual field data. 
 

• Mechanistic modelling aims to replicate reality in detail but will introduce 
lots of uncertain parameters.  
 

• Simple statistical models do not utilize relevant prior knowledge. 
 

• Models may not be valid, but do we have valid data either? 
– Good quality does not mean it’s valid for RA-question. 
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Need to find a link between different uncertainties (aleatory / epistemic) 

 
• Directed Acyclic Graph (DAG) of the whole model clarifies a bit 

 
• Information on one part of the model is connected to others (Bayes) 

 
 
 
 
 

   Modeling evidence synthesis 
Is it feasible?  
- Some examples exist 
  More examples needed.   

Albert et al: A Bayesian evidence synthesis for estimating  
campylobacteriosis prevalence, Risk Analysis, 31(7), 1141-55. 2011.  

The Quest for More Unifying Treatment of 
Uncertainty  
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• Data will constrain what can be inferred… 

 
• Sensitivity of the surveillance method is part of the problem. 

 
We may need to model both p & psen. 
 
Identifiability? 

 
Assume N=100 tested, X=1 positive: 
 
       Two Priors: 
        P(psen) = U(0,1)           E(psen)=0.97, SD(psen)=0.01
  
 

 
     

psen   p 

 Data 

Surveillance data from food production 
chain  

p

    0.0     0.5

psen

    0.0

   0.25

    0.5

   0.75

    1.0

p

    0.0    0.05

psen

   0.92

   0.94

   0.96

   0.98

    1.0



Salmonella surveillance:  
detection of infected cattle herds 

• In each geographical area Ai 
– True infection prevalence j(i)  
– pi = overall sensitivity of detection, for the year.  

 
– #positives detected =Yi & # cattle herds =Ni  known. 

                                       # tested herds = Zi is unknown in 
    ’small’ areas (regionally known). 
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pi 
j(i) 

  +/- 
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• pi = overall sensitivity, depends on 
 
a  =P(tested | clinical symptoms) 

 
bi  =P(tested | no clinical symptoms) 
 
k = Number of animals pooled (if pooled) 
 
pw = Within herd prevalence  

 
pf = Laboratory sensitivity of faecal test 
 

 
 agrostat2012, 29.2. 
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Regional 
parameter 

Global 
parameter 
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• Yi  ~  Binomial(Ni,P(detection)) 
 
 
 
 
 
 
 
 
Laboratory sensitivity pf is only one small part of this! 
 

Information about each parameter exploited, 
WinBUGS model  posterior distribution. 
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After some MCMC simulations 
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model{

f or(i in 1:437){ # foreach municipality in 1999 in Finland

cattledens[i]<-cattle[i]/area[i] # cattledensity

herdsinf [i] ~dbin(pinf [i],herds[i]) # number of inf ectedherds

pinf [i]<- expression1[i]+expression2[i]

expression1[i]<- p[1]*step(1.18739-cattledens[i])+p[2]*step(1.89658-cattledens[i])* (1-step(1.18739-

cattledens[i]))+

p[3]*step(2.52852-cattledens[i])*(1-step(1.89658-cattledens[i]))+p[4]*step(3.37003-cattledens[i])* (1-step(2.52852-

cattledens[i]))+p[5]*step(4.40459-cattledens[i])* (1-step(3.37003-cattledens[i]))

expression2[i] <-p[6]*step(5.41454-cattledens[i])* (1-step(4.40459-cattledens[i]))+p[7]*step(6.59755-

cattledens[i])*(1-step(5.41454-cattledens[i]))+p[8]*step(8.29316-cattledens[i])*(1-step(6.59755-

cattledens[i]))+p[9]*step(11.6191-cattledens[i])* (1-step(8.29316-cattledens[i]))+p[10]*step(cattledens[i]-11.6191)

hprev a[i]<- herdsinf [i]/herds[i] # herd prev alence

herdsinf sel[i] ~ dbin(pselinf [i],herdsinf [i]) # selected inf ectedherds

pselinf [i] <- pncs[i] +alpha -pncs[i]*alpha # chance of selection fortesting

herdspos[i] ~ dbin(hsens[i],herdsinf sel[i]) # detected positiv eherds (giv enas data)

denom[i]<- alpha-alpha*pncs[i]+pncs[i]

hsens[i] <- ((alpha-alpha*pncs[i])/denom[i])* labsens +

((pncs[i]-alpha*pncs[i])/denom[i])*ncssens+

((alpha*pncs[i])/denom[i])*(1-(1-labsens)*(1-ncssens)) # herd lev el test sensitiv ity

riskcattle[i]<- meancattle[i]*herdsinf [i] # estimated number of cattle in inf ectedherds.

# probability of being tested (independent of salmonella status):

pncs[i] <- equals(prov ince[i],1)*beta[5]+equals(prov ince[i],2)*beta[6]+

equals(prov ince[i],3)*beta1+equals(prov ince[i],4)*beta[11]+

equals(prov ince[i],5)*beta[3]+equals(prov ince[i],6)*beta[2]+

equals(prov ince[i],7)*beta[7]+equals(prov ince[i],8)*beta[10]+

equals(prov ince[i],9)*beta[4]+equals(prov ince[i],10)*beta[9]+

equals(prov ince[i],11)*beta[12]+equals(prov ince[i],12)*beta[8]

}

#### s e n s i t i v i t y o f p o o l e d s a m p l e s: ##################################

ncssens<-sum(A[]) # NCS sensitiv ity

f or(iii in 1:10){ # equal probabilities forselecting 1-10 animals in a joint sample

A[iii] <-(0.01)*((1-pow(1-pwithin,iii)))*labsens

}

f or(iiii in 11:15){ # equal probabilities forselecting 11-15 animals in a joint sample

A[iiii] <-(0.03)*((1-pow(1-pwithin,iiii)))*labsens

}

f or(iiiii in 16:20){ # equal probabilities forselecting 16-20 animals in a joint sample

A[iiiii] <-(0.15)*((1-pow(1-pwithin,iiiii)))* labsens

}

hinf sel<-sum(herdsinf sel[]) # total number of inf ectedherds that become selected fortesting

meanhsens<-mean(hsens[]) # mean herd sensitiv ity(ov erallherd sensitiv ity )

###### p r i o r d i s t r i b u t i o n s: ############################################

ly mphsens ~ dbeta(279.7,652.6333) #mean=0.3, std=0.015

labsens ~ dbeta(74.31556,6.462222) # prior f orlaboratory sensitiv ity

pwithin ~ dunif (0,1) # prior f orexpectedwithin herd prev alence

# prior f orchance to become CS tested while inf ected:

alpha ~ dbeta(3.057145, 6.86865)

# prior f orchance to become NCS tested while inf ected:

beta[12] ~ dunif (beta[11],ncs[12])

beta[11] ~ dunif (beta[10],ncs[11])

beta[10] ~ dunif (beta[9],ncs[10])

beta[9] ~ dunif (beta[8],ncs[9])

beta[8] ~ dunif (beta[7],ncs[8])

beta[7] ~ dunif (beta[6],ncs[7])

beta[6] ~ dunif (beta[5],ncs[6])

beta[5] ~ dunif (beta[4],ncs[5])

beta[4] ~ dunif (beta[3],ncs[4])

beta[3] ~ dunif (beta[2],ncs[3])

beta[2] ~ dunif (0,ncs[2])

beta[1] ~ dunif (0,1) # dummy v ariable, not used.

beta1<-0 # this is beta forÅland

ncs[1] <- 0.00001 # dummy v ariable, not used.

f or(e in 2:12){

ncs[e] <- ncstests[e]/herdsprov ince[e]

}

herd prevalence and cattle density

theta
0.0 0.02 0.04 0.06

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

0.00953

…and continues 

Animals 
 per km2 

land area 

<1.2 

>11.6 

(10% of municipalities in each class [1]-[10]) 
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Salmonella surveillance: 
detection of infected laying flocks 

• I(t) = true infection status at time t:  I(t) = 1 or 0. 
• t = time since beginning of laying period. 
• p(t) = overall sensitivity of testing at time t. 
• Testing results D1,D2,D3,… at times t1,t2,t3,… 
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p(t) I(t) 

  +/- 

I(t) = hidden Markov process, 
Intensities l and m. 

p(t)  can change due to  
within flock epidemic .  

First approach had assumed  
p(t) = p  for all times t. 
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Hidden Markov process: 
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Transition probabilities for a flock: 01, and 10 
 
 
 
Solve the probability of hidden positive, at age t. 
This can be written recursively (Nagelkerke et al., 1990): 
 
 
 
 
Here:   rt = P(It = 1 | D1,...,Dt), depends on the history. 
If Dt=1, then we know It=1, but typically D1=0,...,Dt=0 
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• Since salmonella is a rare thing (in Finland): 

l is likely to be small 
 

• Since salmonella is hard to clear out from a flock: 
 m is likely to be small 
 

 Expected time to event can exceed 
expected life time! 
 

 
   



What is known of sensitivity p(t)? 

• EFSA report: ”the rate of transmission of 
Salmonella within a flock determines the change in 
within-flock prevalence, which, in turn determines 
when a colonised flock can be detected”. 
 

• If flock is very recently infected, detection not 
likely. 

• After 2-4 weeks since infection, detection almost 
sure. (Within flock prevalence gets > 5%). 

• After some longer time, detection may be less 
optimal, (intermittent shedding, immunity, 
adaptation, other effects?) 
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What is known of sensitivity p(t)? 

• EFSA report: ”most hens stop shedding the 
bacteria after approximately three weeks”.  

– AND: ”over time the number of organisms 
excreted by infected birds, and as a 
consequence, the within-flock prevalence, may 
decrease”.  

 
• To simplify, this could be described by a function 
of duration of infection in the flock. 

– Duration depends on time of infection. This is 
unknown parameter t0. 

agrostat2012, 29.2. 
jukka.ranta@evira.fi 

27 



• Sensitivity as a function of duration d = t-t0 ?  
– E.g. simple function: 

 
 
 
– To get sensitivity at time t (age of flock), we need to integrate over 

unknown t0. 
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• Sensitivity as a function of duration d = t-t0 ?  
– But which function? 

 
 
 
 
 
 
 
 
 
 
 

Desideratum: 
– Should reflect assumptions  
– Should be simple (for ease of integration) 
– As few parameters as possible  
– Parameters with meaningful interpretation (to be elicited) 
– To be fitted to experimental data, if ever available 
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• Sensitivity as a function of duration d = t-t0 ?  
 

– For example, Gaussian function gives: 
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• DAG of previous models for hidden process and 
sensitivity, with one testing result only:  
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p(t) I(t) 

  +/- 

l, m  p* 

Parameters of 
chosen function 

But there was a history of  
testing results… 



• Past testing results provide evidence about where 
t0 probably was, given that I(t)=1. 
 

• The history is necessarily a series of negatives 
(positive flocks are eliminated). 

• To compute p(t) at a time point t between 1st and 
2nd testing times t1 and t2, e.g. with Gaussian 
function: 
 
 
 
 

• More testing times  more steps! 
• Normalizing constant by numerical integration. 
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• Finally, solving again: 
 
 
 
 

• But this also becomes numerical, because of a 
more complicated (t0 | It=1). 
 

• But OpenBUGS has a procedure for this: 
 result <- integral(F(),start,end,accuracy) 
 
• Becomes eventually slow, but better than 
simulating t0 for every flock. 
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• Test results: compute posterior, for example with 
p*=0.9, and with exponential increase & decrease 
with a=-log(0.05)/(4/52), d**=8/52 
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• Test results: posterior probability of true 
prevalence at 4 testing times:  
 
 
 

 
• Finally, estimate true prevalence over laying 
period to quantify risk of production  further used 
in RA.  
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  mean  sd  val2.5pc median val97.5pc  

 p(I[1]=1) 0.1579 %  0.143  0.01861 0.1146 0.6258  
 p(I[2]=1) 0.1312 %  0.08776  0.02076 0.1098 0.353  
 p(I[3]=1) 0.1332 %  0.1013  0.01676 0.1079 0.3773  
 p(I[4]=1) 0.1559 %  0.1313  0.01395 0.1174 0.486   
  

P(I[4]=1)

0.0 0.5

p
[4

]
0

.2
0
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.6
0

.8

 Vague prior distribution for  
function parameters instead of  
point values – identifiability?  
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95% of max sensitivity (p*=0.9)  
achieved in aw ~ U(1,5) weeks. 
a95 = -log(0.05)/(aw/52) 

Decrease begins after  
d** ~ U(8,16) weeks. 

Test sensitivity p[i] at  
1st and 4th 

testing time:  
how they depend on  

parameters  
of the function.  

Sensitivity to parameter 
assumptions 

}d-max{d * **

)1(

)(

aad eep

dp







 
• To conclude: 
 
•Observed data represent the only direct evidence we 

have about a current situation in a food production 
chain, e.g. egg production, under risk of e.g. 
salmonella.  
 

•However, information in surveillance data depends 
on sensitivity of the whole testing scheme which can 
be variable over time or geographical areas. 
 

•This is challenging for inference, because the 
underlying process state and the sensitivity need to 
be jointly modeled.  
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• To conclude: 
 
•Bayesian inference deals with unknown parameters 

jointly, instead of an independent analysis for each, 
which would not represent the combined uncertainty.  
 

•Computationally intensive, so try not to make it more 
complicated than necessary – ”models should be kept 
as simple as possible, but not more”.  

 
 

 

–Merci beaucoup pour votre 
attention! 
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