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Context: Simulating a pilot plant for another product

We have a simulation model for corn drying
→ Often in food process: nonlinear ordinary differential

equations (ODEs) and is nonlinear in parameters:
nonclassic design of experiments (DoE) is difficult.

Objective: use this model for rice drying
Method: update product-related model parameters
→ Diffusion coefficient Dw (X ,T )
→ Heat transfer coefficient at surface h(Tair )
→ Inner structure

Successive estimations of h(100◦C) will follow, based on
experiments with varying temperature.
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Efficient ”A-optimal” strategy

One experiment (2 hours):
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Note: HRair is optimized
similarly, other parameters
are also estimated.
*”predicted quality of esti-
mation” is the inverse of A-
optimal criterion.

h(100◦C) = 15± 9 W.K−1.m−2 has the right order of
magnitude. Predicted global quality* of estimation: q=0.27
(≈ 1σparameters, The higher the better).
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Efficient ”A-optimal” strategy

Three experiments (2 hours each):
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estimation” is the inverse
of A-optimal criterion..

h(100◦C) = 11.5± 0.8 W.K−1.m−2

Predicted global quality* of estimation: q=4.87
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Comparing intuitive and optimized strategies

Two strategies were tested to choose Tair and HRair .

quality of experiment designs
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Model-based optimal strategy with varying optimized
drying conditions.

→ h(100◦C) = 11.5±0.8
W.K−1.m−2

Intuitive strategy: central
design

→ Two-factor three-level
grid of 9 experiments:
Tair =50◦C, 70◦C, 90◦C

→ h(100◦C) = 13.0± 0.5
W.K−1.m−2

Workload reduction factor 2.6*. *Journal of Process Control 2012, pp. 95-107
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Illustrating seven maximization pitfalls

Problem from van Impe’s team:
Identifying kinetics of Escherichia coli growth by van
Derlinden et al’s mOdeL (FOODSIM 2008, pp. 102-109).
Only temperature is optimized.

Particularity: analytic solution of these differential equations
Better illustrations.
Not needed for optimal experiments design.

Sparing computer resources for better models.
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Simulation model of Escherichia coli

Simulation model with 5 parameters:
dN
dt (t) = Q(t)µ

(
T (t)

)
N(t)(1− N(t)

Nmax
)

dQ
dt (t) = Q(t)µ

(
T (t)

)
(1−Q(t))

µ(T ) = µo
To−T−

× (T−T−)2(T−T+)
(To−T−)(T−To)−(To−T+)(To+T−−2T )

5 unknown parameters to identify by experiments
Nmax Upper bound of Colony Forming Units per ml.
µo Maximal growth rate of ln(N), 1/h.

[T−,T+] Temperature range for growth.
To Temperature for fastest growth.
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Parameterizations of the temperature profile

Example of temperature profile
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Temperature profile tuned by
only* two numbers:

tr : cooling time before
reheating, h
s, heating power, ◦C/h

Innoculation done at t=0; perma-
nent cooling as exp(-t/5) to 15◦C.
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Predicting the quality of estimation

Notation required to compute quality of design: the
Jacobian J of predictions is a 8x5 matrix:
→ 8 predictions of sampled concentrations* (with standard

error σmeasure)
→ 5 parameters.

Definition of the quality of experimental design (inverse of
A-optimal criterion)

q =

(
trace(JT×J)−1)−1/2

σmeasure
≈ 1
σparameters

Different temperature profile leads to different qualities.

0 7
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45

⇒ Quality q=0.0111···

Other temperature profiles⇒ other qualities.
*7 hours of experiments, one hour between samples
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Quality of all possible experiments
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(h)
s (K/h)

Initial guess
tr = 2h

s = 10◦C/h
q = 0.0111

J
J
J
J
J
J
J
J
JĴ

XXX
Xy

tropt = 3.936h
sopt = 23.92◦C/h
qmax = 0.0986

Cooling
time before reheating

Cheaper optimizer⇒more
realistic models

Heating power
5041 evaluations of q
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time before reheating

Heating power

Nelder Mead
tr = 2.57h

s = 12.52·◦C/h
q = 0.0403·HH

HHH
HHHj

XXX
Xy

tropt = 3.936h
sopt = 23.92◦C/h
qmax = 0.0986
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0
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(h)
s (K/h)

Cooling
time before reheating

7 pitfalls should be avoided.

Heating power
*least probability
encountered in fermentation,
drying, reactions, pharmacokinetics.

Nelder Mead 1
tr = 2.57h

s = 12.52·◦C/h
q = 0.0403·PPPPPPPPq

HHj
Nelder Mead 2, tropt = 3.936h, sopt = 23.92◦C/h, qmax = 0.0986

������9

20×Nelder Mead⇒
q > 0.8qmax with
≈ 87% probability*

XXX
Xy 20×Nelder Mead⇒

q > qmax/2 with
≈ 99.6% probability*
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Pitfall 1: correlations⇒ axis direction quite useless

0

0.1

q

0 0

2
1 x

y

”Rosenbrock”-like ridges
A
A
A
A
A
A
AU
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min(100,10y2x) =
Heating power, ◦C/h
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Pitfall 2: constrains, wide⇒ complex boundaries
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Pitfall 3: repetitions⇒ higher density of local extrema
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min(x , y), Cooling
time before reheating, h

⇒slows search

10|x−y |,
Heating power, ◦C/h
Symmetry⇒duplicates maxima
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Pitfall 4: sensitivity peaks⇒ extrema overlooked
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Pitfall 5: flat zones⇒ no local identifiability
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Pitfall 6: odd parameters⇒ nonphysical parameters
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x + exp(2x − 12), Cooling
time before reheating, h

Heating power, ◦C/h:
7 + ey/1.596− e−y/9.083
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Pitfall 7: finite differentiation⇒ noise and bias
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Programming direct
differentiation avoids this pitfall

Heating power
Error due to computing J by
finite differences of 10−8
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No analytic integration⇒workable ridges+ODE noise
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Error due to lack of analytic
integration
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Pitfall 7+no analytic integration=disaster (noise>signal)
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Pitfall 7: disaster without analytic

Works without analytic, when solution is non-analytic:
→ Real quality design: qopt,NoAnalyTiC‘3 = 0.0986 despite the

ridges.
Pitfall 7, finite differentiation method, with optimal
difference=10−11:
→ q7opt = 0.0358
→ Bigger powers of 10 create bias, over-estimating q7opt .
→ Smaller powers of 10 create precision loss on q7opt .
→ Mean of all q7opt is 0.0102.

Pitfall 7 without analytic, with optimal difference=10−5

→ q7&8opt = 0.0111
→ q7&8opt For other powers of 10: mean=0.0052.
→ Terrible noise⇒

Progression limited to 9.5% of what is needed.
Hence 0.095−2 more random guesses are needed.

Pitfall 7 is terrible.
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After experiment, estimation of model’s unknowns:
Sensitivity matrix J is available⇒ Gauss-Newton methods
are allowed.
Reparameterization of model’s unknowns is mandatory,
and:
→ Changes the optimal experiment.
→ Facilitates the use of A-optimality, which gives the better

results than D-optimal strategy.
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New toolbox for experiment design

Requires simulation model, computer time, pilot plant.
Implemented in MATLAB (saisir Toolbox)
Uses fast optimization methods when all 7 pitfalls are
avoided.
Double-checked on two published DoE: van Impe (2008,
E. Coli) and Pronzato (2008, pharmacology).
Experimental validation on application of rice drying in
Goujot (2012, J Proc Cont), pending on Ethylene Diacetate
+ 2 NaOH in reactor (LGC, Toulouse).

Thank you for your attention.
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