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Example of optimal design

Context: Simulating a pilot plant for another product

@ We have a simulation model for corn drying
— Often in food process: nonlinear ordinary differential
equations (ODEs) and is nonlinear in parameters:
nonclassic design of experiments (DoE) is difficult.
@ Objective: use this model for rice drying
@ Method: update product-related model parameters

— Diffusion coefficient Dy (X, T)
— Heat transfer coefficient at surface h(Ty;)
— Inner structure

Successive estimations of h(100°C) will follow, based on
experiments with varying temperature.
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Example of optimal design

Efficient ”A-optimal” strategy

One experiment (2 hours):

100
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Note: HRgj, is optimized
0 . . . d similarly, other parameters
0 05 1 1.5 2  are also estimated.
*'predicted quality of esti-
t, hours mation” is the inverse of A-

optimal criterion.

h(100°C) = 15 + 9 W.K~'.m~2 has the right order of
magnitude. Predicted global quality* of estimation: q=0.27
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Example of optimal design

Efficient ”A-optimal” strategy

Three experiments (2 hours each):
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0 0.5 1 1.5
Note: “predicted quality of
t, hours estimation” is the inverse

of A-optimal criterion..
h(100°C) = 11.5+ 0.8 WK~ ".m2
Predicted global quality* of estimation: q=4.87
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Example of optimal design

Comparing intuitive and optimized strategies

Two strategies were tested to choose T, and HR_;,.

@ Model-based optimal strategy with varying optimized

drying conditions.

quality of experiment designs

— h(100°C) = 11.5+0.8

g QA
W.K-1.m~2 EE @@Q‘
” . N
@ Intuitive strategy: central = °>
design 4 S S
A S
— Two-factor three-level z 'S
grid of 9 experiments: o5 5 2 o .

Tair =50°C, 70°C, 90°C

— h(100°C) = 13.0 £ 0.5
W.K-.m~2

Workload redUCtion faCtor 26* *Journal of Process Control 2012, pp. 95-107

10

number of planned experiments
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Maximizing quality

lllustrating seven maximization pitfalls

Problem from van Impe’s team:
@ |dentifying kinetics of Escherichia coli growth by van

Derlinden et al’s mOdeL (FOODSIM 2008, pp. 102-109).

@ Only temperature is optimized.

Particularity: analytic solution of these differential equations
@ Better illustrations.
@ Not needed for optimal experiments design.

Sparing computer resources for better models.
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Maximizing quality

Simulation model of Escherichia coli

Simulation model with 5 parameters:

@ (0 = QORTOINO -~ g2)
20 = au(TO)(1 - Q)
i) = 29 X gy e T T2

5 unknown parameters to identify by experiments

q/28



Maximizing quality

Simulation model of Escherichia coli

Simulation model with 5 parameters:

@ (1) = QTN - a)
( ) ( ( T)S' T T))
wmT) = 75 X 7 )(T( To)= () ( T+)()T0+T,—2T)

5 unknown parameters to identify by experiments:
Nmax Upper bound of Colony Forming Units per ml.
1o Maximal growth rate of In(N), 1/h.
[T_, T4] Temperature range for growth.
T, Temperature for fastest growth.
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Maximizing quality

Simulation model of Escherichia coli

Simulation model with 5 parameters:

‘Z,’}’(t) = Q(t)u( (t))N( )1 - Nm2<)
( t) = Q(O)u(T(1) (1 - Q(1))
T = 2 X mmre )(T(TTZ)T () (TT+T)<)T0+T——2T>

5 unknown parameters to identify by experiments:
Nmax Upper bound of Colony Forming Units per ml.
1o Maximal growth rate of In(N), 1/h.
[T_, T,] Temperature range for growth.
T, Temperature for fastest growth.
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Maximizing quality

Parameterizations of the temperature profile

Temperature profile tuned by

Example of temperature profile
only* two numbers: gl p P

45
40
35
30
25

Q

0 hours 7
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Maximizing quality

Parameterizations of the temperature profile

Temperature profile tuned by

only* two numbers: Example of temperature profile

o 45

@ f;: cooling time before 40
reheating, h o

s 35

30

25

o hours 7
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Maximizing quality

Parameterizations of the temperature profile

Temperature profile tuned by

Example of temperature profile
only* two numbers: gl p P

45

@ f;: cooling time before 40 ®,§O
reheating, h O A
. o 35 O
@ s, heating power, °C/h 20
Innoculation done at t=0; perma- :
nent cooling as exp(-t/5) to 15°C. 2,1 ——
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Maximizing quality

Predicting the quality of estimation

@ Notation required to compute quality of design: the
Jacobian J of predictions is a 8x5 matrix:
— 8 predictions of sampled concentrations* (with standard
EITOr O measure)
— 5 parameters.

@ Definition of the quality of experimental design (inverse of
A-optimal criterion)
_ (trace(JTxJ)7T) 1
B O measure - O parameters

Different temperature profile leads to different qualities.

—-1/2

*7 hours of experiments, one hour between samples
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Maximizing quality

Predicting the quality of estimation

@ Notation required to compute quality of design: the
Jacobian J of predictions is a 8x5 matrix:
— 8 predictions of sampled concentrations* (with standard
EITOr O measure)
— 5 parameters.
@ Definition of the quality of experimental design (inverse of
A-optimal criterion)
(trace(JT xJ)~1)

—-1/2 1

O measure O parameters

Different temperature profile leads to different qualities.
©
@ 3 = Quality g=0.0111---
30

25

0 hours 7

*7 hours of experiments, one hour between samples
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Maximizing quality

Predicting the quality of estimation

@ Notation required to compute quality of design: the
Jacobian J of predictions is a 8x5 matrix:
— 8 predictions of sampled concentrations* (with standard
EITOr O measure)
— 5 parameters.
@ Definition of the quality of experimental design (inverse of
A-optimal criterion)

_ (trace(JTxJ)7T) 1

O measure O parameters

Different temperature profile leads to different qualities.
45

[&]
o 40

@ 3 = Quality g=0.0111---
30
25

—1/2

hours 7

0
@ Other temperature profiles = other qualities.
*7 hours of experiments, one hour between samples
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Maximizing quality

Quality of all possible experiments

0. Initial guess B — ton=3936h
q t=2h . % s =23.92°C/h: - -
s=10°C/h " | 1S =0. e
oo B e 00ee

“"ﬂ A ‘:‘

4 66 t
_ 4 Cooliqa
Heating pOWGf 1 0 n time before reheating
5041 evaluations of q q 0 Cheaper optimizer=-mores

Siyn! Y




Maximizing quality

0.1

ot =3.936h © 1
| sop=23.92°C/h-- -
(2  Qmax = 0.0986 -

1 'Nelder Mead
aq t, = 2:57h
s =12.52.°C/h

o>
100 g :
S (K/h) 6 Ir
2 (h)
Heating power Cooling
1 0 time before reheating
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Maximizing quality

Nelder Mead 2, tros = 3.936h

Sopt = 23.92°C/h, Gmax =.0.0986
01_ ..~ I S

- _20xNelder Mead=
q > 0.8Qmax Wlth N
~ 87% probability*

| Nelder Mead 1

t, = 2.57h -
s=12.52°C/h " |l Aol
. - 9=00403- g j0| "~ 20xNelder Mead=> '

- G > Qmax/2with -
-~ 99.6% probability*

S 3
(K/h) 6
Heating power 2 Cooli(n g)

*least probability
encountered in fermentation, 1
drying, reactions, pharmacokinetics.

time before reheating
7 pitfalls should be avoided.
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Seven numerical pitfalls

Pitfall 1: correlations = axis dlrectlon quite useless

oft

min(100, 10Y°X) =
Heating power, °C/h

/
U

i I/

,l \!;:‘

i |
"' ‘\. Wi ”Rosenb;rock”Jike .ri.digfes

"

w/\,

x?y, Cooling
time before reheating, h
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Seven numerical pitfalls

Pitfall 2: constrains, wide = complex boundaries
01, .- S S

q

L ‘ Forbi‘ﬁdden{ ,
- "Wide . unacceptable - . -
search '
domain:

Vi

br
(h)
Cooling
time before reheating

Z‘45°C(h) 6

Time at which 4

reheating exponential

would cross 45°C
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Seven numerical pitfalls

Pitfall 3: repetitions = higher density of local extrema
01, .- : ' : .

q

——
<

10"‘*_}", > iﬁ(x,y), Cooling
Heating power, °C/h 0>=<0 time before reheating, h
Symmetry=-duplicates maxima —slows search
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Pitfall 4: sensmwty peaks = extrema overlooked
0.1, : : :

i : : Illllll”” . High density
- IIIII;%IIIIIIIIIIII/I///I/II/// of Iocal

L
)

100y,
Heating power, °C/h
Even efforts

Cooling
time before reheating
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Seven numerical pitfalls

Pitfall 5: flat zones =- no local identifiability
0.1. . - : o

ol ton =3.9360
R s, —2392°Ch

q

4 .-+ . Nelder Mead - -
N g . t,=591h .
N s=9.25°C/h. . .

100y, Heating power, Cooling
°C/h 1 0 time before reheating
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Seven numerical pitfalls

Pitfall 6: odd parameters = nonphysical parameters
01. .- : /;; o : S

Heating power, °C/h: ) x + exp(2x — 12), Cooling
7+ ¢€¥/1.596 — e7¥/9.083 time before reheating, h
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Pitfall 7: f|n|te differentiation = n0|se and blas
0.1.

q7—q

| \ \\‘\\\ )
| \\\ :
’/",« QQ\‘

1'1

S (K/h)

Heating power - : 4 quling

Error due to computing J by 2 time before rehgatmg, h

finite differences of 10~8 10 . . .Prog ramming d/.rect
differentiation avoids this pitfall,
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Seven numerical pitfalls
No analytic integration=-workable ridges+ODE noise
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Seven numerical pitfalls

Pitfall 7+no analytic integration=disaster (noise>signal)

U]
“ 1‘ ‘l“‘

q7—q

100X v
Iy

S (K S %! el 6
PN LI V= 4
Heating power ‘ ‘ Cooling
1 0 time before reheating, h

Error for computing J by finite differences of 10~° & lack of analytic int‘egraz‘igg28



Seven numerical pitfalls

Pitfall 7: disaster without analytic

@ Works without analytic, when solution is non-analytic:

— Real quality design: Qopi,Noanayic's = 0.0986 despite the
ridges.
@ Pitfall 7, finite differentiation method, with optimal
difference=10""":

— Qropt = 0.0358
— Bigger powers of 10 create bias, over-estimating qzop:-
— Smaller powers of 10 create precision loss on g7gpt.
— Mean of all g7t is 0.0102.

e Pitfall 7 without analytic, with optimal difference=10—°

— Qrasopt FOr other powers of 10: mean=0.0052.
— Terrible noise =

@ Progression limited to 9.5% of what is needed.
@ Hence 0.095~2 more random guesses are needed.

Pitfall 7 is terrible.
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Seven numerical pitfalls

After experiment, estimation of model’s unknowns:
@ Sensitivity matrix J is available=- Gauss-Newton methods
are allowed.

@ Reparameterization of model’s unknowns is mandatory,
and:
— Changes the optimal experiment.
— Facilitates the use of A-optimality, which gives the better
results than D-optimal strategy.
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Conclusions

New toolbox for experiment design

Requires simulation model, computer time, pilot plant.
Implemented in MATLAB (saisir Toolbox)

Uses fast optimization methods when all 7 pitfalls are
avoided.

Double-checked on two published DoE: van Impe (2008,
E. Coli) and Pronzato (2008, pharmacology).

Experimental validation on application of rice drying in
Goujot (2012, J Proc Cont), pending on Ethylene Diacetate
+ 2 NaOH in reactor (LGC, Toulouse).

Thank you for your attention.
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