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With the design of sensory experiments,

sensometricians (including referees of journals) appear to have

only one attitude:

use a design which is as balanced as possible...

(whatever might be the purpose of the experiment).
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In this talk, 

I try to show why the recommendation

"Use a design which is as balanced as possible" 

is not always a good idea.
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Randomized versus systematic design

We consider a very general model

y = τ + f + e

with

y .... real observation

τ .... ideal observation

f .... systematic bias due to nuisance

e .... random error
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Nuisance f

yij = τd(i,j) + fij + eij

d
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One approach of experimental design would be to 

- find a detailed model for the nuisance f

- assume that the errors are iid. 

Once we have a model for f, we then can determine an 

experimental design which is in some sense optimal for this

model.

This normally leads to designs with a high degree of balance.
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Modelling f.

A popular example is the row-column model:

yij = τd(i,j) + µ + αi + βj + eij

Here, f is modelled as

an effect of the assessor + an effect of the period.
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For a simulation experiment, we look at the simple case that we

have

4 assessors

4 products

and each assessor can evaluate 4 products.
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If we assume that the row- column model is correct, we get fij

with a restricted structure, like

2 3 4 5

7 8 9 10

4 5 6 7

5 6 7 8

φ

 
 
 =
 
 
 

Use this as the basis of a simulation experiment.
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A good design for the row-column model is

a Latin square, like

1

1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1

d

 
 
 =
 
 
 
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Using f and adding a random error, we construct data of the

following structure

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

y y y y

y y y y
y

y y y y

y y y y

 
 
 =
 
 
  
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Analyzing these data, assuming design d1, we get estimates like

�
1 3 11 23 32 44 13 24 31 42

1 1
( ) ( )

4 4
y y y y y y y yτ τ− = + + + − + + +

The row- and the column-effect cancel in this estimate
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Neglecting the period effect might lead to a design like

2

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

d

 
 
 =
 
 
 

Here we would get the estimate

�
1 3 11 21 31 41 13 23 33 43

1 1
( ) ( )

4 4
y y y y y y y yτ τ− = + + + − + + +

where the period effect does not cancel.



14

Simulating 1,000 data sets from the row- column model and 

calculating , assuming designs d1 and d2, we get�
1 3τ τ−

0.706-2.006complete block 

design d2

0.7110.009systematic latin

square d1

standard deviationmeandesign
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For systematic designs, 

neglecting an effect which is present in the data

leads to biassed estimates
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The alternative would be a 

randomized design. 
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Randomizing the order for each assessor independently might

lead to

3

2 4 1 3

4 1 2 3

3 1 2 4

1 2 3 4

d

 
 
 =
 
 
 

Here we would get the estimate

�
1 3 13 22 32 41 14 24 31 43

1 1
( ) ( )

4 4
y y y y y y y yτ τ− = + + + − + + +

where the period effect still does not cancel.
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Randomization does not imply

that we get a balanced design.

Randomization theory considers the observed design as one

possible outcome of an experiment,

just as the observed data are also one outcome among many

possibilities.
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Simulating 1,000 data sets from the row- column model and 

calculating , we get�
1 3τ τ−

1.16-0.015randomized

complete block 

design

0.7110.009systematic latin

square d1

standard deviationmeandesign
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For randomized designs, 

neglecting an effect which is present in the data

leads to an increased variance

(but leaves the estimates unbiassed)
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It is possible to use randomization and consider the period

effects:

A randomized latin square

randomizes rows and columns (as a whole)
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Simulating 1,000 data sets from the row- column model and 

calculating , we get�
1 3τ τ−

1.16-0.015randomized

complete block 

design

0.7180.005randomized latin

square

0.7110.009systematic latin

square d1

standard deviationmeandesign
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The advantage of randomization gets visible if the model is not

exactly correct. 

Assume

1 2 3 4

2 4 6 8

3 6 9 12

4 8 12 16

φ

 
 
 =
 
 
 

There is a row- column-structure, but not exactly additive.
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Simulating 1,000 data sets from this nonlinear f, and 

calculating , we get�
1 3τ τ−

2.580.006randomized

complete block 

design

1.840.011randomized latin

square

0.7061.756systematic latin

square d1

standard deviationmeandesign
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The systematic latin square is no longer unbiassed.

Both kinds of randomized designs remain unbiassed, the

variance of the estimates gets better for a randomization that is

adapted to the structure of the data.

Note that even the randomized design

which neglects the period effect present in the data

performs better than the systematic latin square
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Carryover effects are a special problem.

If additive carryover effects are present in the data,

than neighbour balanced designs minimize

(a function of) the bias due to carryover effects.
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Looking through FQaP, virtually all

articles which discuss their design appear to stress that

"the products were accorded to assessors according to a 

Williams latin square, balanced for carryover effects".

(I would have been a lot happier to read something about

washout periods or other methods to avoid carryover.)



28

There are three major problems:

1) Even with balanced designs carryover effects are not

orthogonal to direct effects, hence uncorrected estimates are not

unbiassed.

2) For the corrected estimates, there is no justification of iid

errors.

3) The model with additive carryover effects is at best 

approximately valid.
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Further problem with carryover:

Do we even want to estimate the direct effect?

What about permanent effects? 

(permanent effect = direct effect + carryover)

If we want consumers to taste more than a small amount of our

product, they will experience the "permanent effect".
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For the estimation of permanent effects, 

neighbour balanced latin squares are not efficient!

Optimal design for permanent effects

(Bailey and Druilhet, 2004)

4

1 1 2 2

1 1 3 3

4 4 3 3

d

 
 
 =
 
 
 

⋮ ⋮
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Period effects:

Even balancing for period effects is not always a good idea.

Assume we do not want to compare the products, but want to 

find out whether there are differences between groups of 

assessors: Do assessors 1 and 2 have a better preference for

product 1 than assessors 3 and 4?

Then we would simply give product 1 to all four assessors.

Now assume we want to repeat this for products 2, 3 and 4. 



32

With the latin square

1

1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1

d

 
 
 =
 
 
 

the measurement of product 1

by assessor 1 contains period 1,

by assessor 2 contains period 3,

by assessor 3 contains period 2,

by assessor 4 contains period 4.
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With the design

2

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

d

 
 
 =
 
 
 

all measurements of product 1 contain period 1,

and the difference between the assessors is unbiassed by period

effects. 
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We used the same idea of a design

in an experiment, 

where we compared the food preferences and sensitivity of

obese, over-weight and normal weight

children for the taste categories,

like sweet, fat, sour, etc. 

It took us some time until we found a journal with referees who

appreciated the design.
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