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Understand and predict 

 Typical situation in food science 
(Similar in other disciplines) 



Important structures – main components 

• Multi-way 

 

 

 

 

• Multi-block 

– Focus here 

 

 

 

• ”L-methods”  
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Focus 

• Discuss some new approaches based on PLS regression 

• PLS and orthogonalisation in sequence  

 

– Philosophy and results 
 

– Closer to classical statistics than standard multi-block PLS 
regression (MB-PLS) 

 

– Invariance, explicit handling of different dimensionality of blocks 

 

– Interactions 

 

– Relation to ANOVA 
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Typical example – process modelling 

Raw material 

measurements 

(spectroscopy) 

Process settings 

(design or measurements) 

Measurements taken  

during processing 

(spectroscopy) 
End product  

properties 

X Z V Y + + = 

Jørgensen, K., Segtnan, V., Thyholt, K. and Næs, T. (2004).  

A comparison of methods for analysing regression models  

with both spectral and designed variables.  J. Chemometrics, 18, 

10, 451-464 
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Another typical example: sensory and consumer science 

Chemical data Sensory data Consumer preferences 

Prediction and interpretation 

+ 

Måge, I., Menichelli, E. and Næs, T. (2011)- Preference mapping by PO-PLS: Separating common and  

unique information in several data blocks. Food Quality and Preference (in press). 
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Situation and model considered 
 

• Multiblock regression model  

– (with interactions, see later) 

 

 

 

 

 

• X and Z can be anything: design, highly collinear etc. 

– Y can be multivariate 

 

 

• Concentrate on two input blocks, but methodology 
can be extended 

 

eZXY  
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Some possible approaches to multi-block 
regression 

• Full LS (ANCOVA). Often impossible due to collinearity – large number 
of variables 

 

• Full (concatenated) PLS of Y vs. X, Z 

– useful, but possibly problems with relative weighting and different 

dimensionality of blocks 

 

• MB-PLS regression 

– Concatenated PLS with additional tools - common components etc. 

• Better, but similar problems as for concatenated PLS 

regression 

 

• LS regression of Y vs. principal components of  X and Z (computed 
separately). 
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SO-PLS – sequential and orthogonalised 
PLS regression 

 
 

1. Fit block Y to X using PLS regression (compute scores and loadings) 

 

 

2. Orthogonalise Z with respect to X (or PLS components from X), Zorth 

 

 

3. Fit Y to the Zorth (scores, loadings) 

 

 

4. Fit Y to scores TX, TZ
orth (independent, orthogonal) 

 

 

 

• For more than two input blocks, the same procedure is repeated 
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SO-PLS – some properties 

 

 

 

 

 

– Can be back-transformed to original units for X and Z 

 

 

– Invariant wrt. relative weighting of blocks 

 

 

– Different dimensionality - explicitly handled 

 

• For instance: Design variables and large multivariate blocks 
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Order of the blocks? 

 

 

• Sometimes obvious 

– Design + extra information (process and raw materials, 

ANCOVA) 

 

• In other cases not obvious 

 

– Often similar prediction ability 

– Interpret both ways – additional information? 

• Problem is turned to an advantage 
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Validation 

 

• CV as usual 

– Determine the number of components by Måge plot (see later) 

 

 

• Two options: Universal vs. sequential optimisation 

 

 

• Sequential fits better to the idea of the method 

– Universal – better predictions  

 

 

• Special interest in incremental improvement 
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Måge plot for component selection 
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Interactions 

• Add columnwise products of linear functions of X and Z, XV1 and ZV2.(denote 
by *) 

 

 

 

 

 

 

– Includes direct mulplication 

 

– Includes direct multiplication after variable selection 

 

– Includes principal components of X and Z. 

 

 

 

 

 

 

   

e)φ(ZV*)(XVZγXβY 21 

Næs, Måge, Segtnan (2011). Incorporating interactions in multi-block SO-PLS regression. J. Chem (in press) 
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Estimation procedue   

 

 

• SO-PLS with three blocks: Fit X and Z before X*Z 

 

 

• Preserves invariance (wrt. relative weighting of the blocks) 

– Orthogonalisation and column-wise multiplication 

 

 

• Direct generalisation of ideas from polynomial regression and 
ANOVA 

 

 

• Non-linearities handled similarly (new blocks or in the same) 



Interaction - example 

Salting of salmon  

 

 X - Design variables 

  salmon size (3 categories) 

  salting level (3 levels) 

         Z - NIR measurements of fillets  

  (6 highly collinear wavelengths, in the fat/water area)   

Y – salt content after salting and storage 



Results 

RMSEP  1.21     1.04        0.57       0.49 

 

 

 Mean        Only X        X and Z      all blocks 
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The different lines correspond  

to different choice of components  

for X*Z. The horizontal  
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of components in Z  

X fitted by LS 
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level 2 weight factor

level 3 weight factor

level 2 salt factor

level 3 salt factor

The one with the largest deviation from 0 (_____) is the  

one corresponding to level 3 for factor 2.  

Regression coefficients for X*Z based on PLS.  
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Relations to standard Type I ANOVA 
 

• Sequential fitting 

– Linear effects before interactions – the same idea as underlying Type I ANOVA. 

 
 

• PLS is equal to LS for the maximum number of components 

– Direct generalisation of ANCOVA for data that can not be analysed by LS 
 
 

• Information about incremental contributions (improvements) 

– Can decompose SS into a sum of contributions from each block and residuals 
(orthogonal) 

 
 
 
 

• Testing is more problematic since DF’s are not known for PLS 

– Can use CV-ANOVA (possibly also the bootstrap) 

 
     Indahl, U.G. and Næs, T. (1998) Evaluation of alternative spectral feature extraction methods of textural 

images for multivariate modelling. Journal of Chemometrics, 12,4, 261-278 

E

orth

Tot
SS)XZ(SSSSZSSXSS 
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Source RMSEP “MS” 

(SS/N) 

p-values 

(2-way CV- 

ANOVA) 

First Matrix 288 2978228 0.017 

Second Matrix 284 67671 0.725 

RES 2095970 

Total 467 5668190 

”ANOVA” table based on CV-ANOVA 

First matrix - design, second matrix - spectral data 
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Interpretation 

 
• The model gives independent PLS models, regression coefficients (original 

or orthogonalised units) and prediction after each block 
 

• Three plots based on these aspects 

 

– Direct interpretation of PLS models 

• Useful for outlier detection and also for interpretation 
 

– PCP 

• Method-independent based on regression coefficients 

– After back-transformation to original units 

 

– Projection onto PC’s of predicted Y 

•      Projections based on X and based on X,Z (compare) 
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PCP for interpretation 

 

• Basic idea. PLS components are introduced for prediction and do not 
necessarily reflect the natural dimension of the problem. 

 

– Also sometimes difficult to interpret if many 
 

 

• PCA of predicted Y  

– Scores and Y-loadings 

– The scores are linear functions of the independent variables (X-loadings) 

– Linear functions of linear functions 

– The latter gives X-loadings (coefficients) 

– Plot the usual way (as for PLS) 

 

• If only one Y - corresponds to regression coefficients 
 

Langsrud, Ø., Næs, T. (2003). Optimised score plot by  

principal components of prediction. Chemolab. 68, 61-74.  
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Example:  Y- two-dimensional, X: NIR – Z: Raman 
  

Y1 = PUFA%emul 
unsaturated fat as % of sample 

7 comp - NIR 5 comp - Raman 

Y2 = %Pufa 
unsaturated fat as % of fat 

Explained variance 

Almost identical for opposite order 
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Block 1: NIR – Block 2: Raman 

PCA of predicted Y 

Y-loadings 

Y2 

Y1 
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Raman and NIR X-loadings from PCP 

Blue related to %PUFA = Y2 

Green related to PUFA%emul = Y1 

NIR Raman 
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Illustration of projection approach 
Plot of predicted values after X and after (X, Z) projected onto the PCA 
space for predicted Y 

Raman improves prediction along first component, %Pufa related 
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SO-PLS for path modelling 
 

• Methodology for linking several data blocks (manifest variables) according to a given 
relation between the blocks (path diagram-arrow diagram) 

– causal or other 

 

 

• Structural equations modelling (SEM)  

 

– Models based on two elements/parts 

 

• Measurement model for each manifest block, outer relations (Factor analysis 
model) 

 

• Path model in the latent variables (inner relations) 

– Joint set of regression models 
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A 

C 

B D 

E 

Smell at rest 

Smell after shaking 

Global quality 

Tasting View 

SO-PLS has also been used for path modelling 

Næs, T. Tomic, T., Mevik, B-H. and Martens, H. (2011). Path modelling by sequential 

PLS regression. Journal of Chemometrics, 28-40 
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New approach 

 

 

Two elements (estimation and interpretation) 

 

1. SO-PLS for each endogenous block – separate models 

 

2. Principal components of prediction (PCP) for interpretation 
 

Allows for 

 Different dimension in each block 

 

 Different information used for prediction and to be predicted in each block 
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PO-PLS 
• Similar to SO-PLS, but focus on common varibility, not on additional variability  

 

 

• First define the common variability space as the space spanned by linear combinations with correlation close to 1 
(canonical correlation). 

– Subspace shared by the two blocks 

– Reduce dimensionality first – stabilize or use regularised canonical correlation 

 

• Then orthogonalise X and Z wrt. this space 

 

 

• PLS of Y onto the orthogonalised versions of  X and Z.  

– Then LS of all three scores matrices 

 

 

• Can be combined with SO-PLS. First XZcommon, then Xorth and finally Zorth. 

– All blocks orthogonal 

 

• Also inviariant wrt. different scale of the blocks – and allows for different dimensionality of the blocks 
 
 

 
Måge,I.  Mevik, B-H. and Næs, T. (2008). Regression models with process variables and parallel blocks 

of raw material measurements. J. Chemometrics, 22, 443-456. 
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X 

Z 

XZcommon 
Y 

Closely related to confounding (or collinearity),  

Confounding among blocks- not among variables 

Illustration of common variability 
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NIR and Raman loadings from PO-PLS 
Canonical correlatioin equal to 0.9, PCA on each first 

Most closely related to Pufa%emul 

Can be seen from plots and correlations 
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Summary 
• SO-PLS and PO-PLS: New methods for multi-block regression 

– Explicit focus on additional and joint information 
 
 

• Flexible in interpretation,  
– PLS models, joint interpretation after back-transformation (PCP), 

additional information - projections, outliers 

 
 

• Invariant and different dimensionality 
 
 

• Interactions can be allowed in SO-PLS 
 
 

• Natural extension of Type I ANOVA 
– Close relation to statistics,  

– Fits to PLS philosophy of extracting information and using residuals  
 

 
• Challenge: better testing (bootstrap?) 
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