ﬂNofima




Typical situation in food science
(Similar in other disciplines)

Understand and predict
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Important structures — main components

* Multi-way '

 Multi-block
— Focus here

 "L-methods”
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Focus

* Discuss some new approaches based on PLS regression
 PLS and orthogonalisation in sequence

— Philosophy and results

— Closer to classical statistics than standard multi-block PLS
regression (MB-PLS)

— Invariance, explicit handling of different dimensionality of blocks
— Interactions
— Relation to ANOVA

Jf Nafi ma
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Typical example — process modelling

X | + Z + V = Y
/ 'r T \
_ Measurements taken
Process settings during processing End product
design or measurements spectrosco "~ :
(desig ) (sp by) _properties
Raw material __
measurements Jargensen, K., Segtnan V., Thyholt K and Nees, T (2004)
A comparison of methods for analysing. regression models |
(Spectroscopy) with both spectral and de5|gned varlables J. Chemometrlcs 18,
10, 451-464 :
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Another typical example: sensory and consumer science

.+- -
_

Chemical data Sensory data Consumer preferences

Prediction and interpreta’fion

Mage, ., Menichelli, E. and Naes, T. (2011)- Preference mapping by PO- PLS Separatmg common and
unique information in several data blocks. Food Quality and Preference (|r'| press) :

ﬂNofl ma
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Situation and model considered

« Multiblock regression model
— (with interactions, see later)

Y =X[B+Zy+e

« Xand Z can be anything: design, highly collinear etc.
— Y can be multivariate

« Concentrate on two input blocks, but methodology
can be extended
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Some possible approaches to multi-block
regression

Full LS (ANCOVA). Often impossible due to collinearity — large number
of variables

* Full (concatenated) PLS of Y vs. X, Z

— useful, but possibly problems with relative weighting and different
dimensionality of blocks

* MB-PLS regression
— Concatenated PLS with additional tools - common components etc.

« Better, but similar problems as for concatenated PLS
regression | |

» LS regression of Y vs. principal components of X and Z (computed
separately). | |



SO-PLS - sequential and orthogonalised
PLS regression

1. Fit block Y to X using PLS regression (compute scores and loadings)
2. Orthogonalise Z with respect to X (or PLS components from X), Zorth
3. FitY to the Z° (scores, loadings)

4. FitY to scores Ty, T,°™ (independent, orthogonal)

« For more than two input blocks, the same proce__.durqis"'r"epea,t,ed“""""" L
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SO-PLS - some properties
Y =TQ+ T Q™) =XV, Q'+ 27V Q™)
— Can be back-transformed to original units for X and Z

— Invariant wrt. relative weighting of blocks

— Different dimensionality - explicitly handled

 For instance: Design variables and large _mi'JItivari'ate blocks
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Order of the blocks?

« Sometimes obvious

— Design + extra information (process and raw materials,
ANCOVA)

* |n other cases not obvious

— Often similar prediction ability
— Interpret both ways — additional information? -
 Problem is turned to an advantage
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Validation

CV as usual
— Determine the number of components by Mage plot (see later)

Two options: Universal vs. sequential optimisation

Sequential fits better to the idea of the method
— Universal — better predictions

Special interest in incremental improvemen_f

Jf Nafi ma
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Interactions

« Add columnwise products of linear functions of X and Z, XV, and ZV,.(denote
by *)

Y=XB+Zy+(XV,)*(LV,)p+e

— Includes direct mulplication
— Includes direct multiplication after variable selection

— Includes principal components of X and Z.

Nazes, Mage, Segtnan (2011). Incorporating interactions in multi-block SO-PL;S regre’ésion. J. C_he'r"h' (in press)- '-
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Estimation procedue

« SO-PLS with three blocks: Fit X and Z before X*Z

* Preserves invariance (wrt. relative weighting of the blocks)
— Orthogonalisation and column-wise multiplication

« Direct generalisation of ideas from polynomial regression and
ANOVA

 Non-linearities handled similarly (new blocksbr In _thé‘ same)

ﬂ Nafi ma
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Interaction - example

Salting of salmon

X - Design variables
salmon size (3 categories)
salting level (3 levels)

Z - NIR measurements of fillets -

(6 highly collinear wavelengths, _,in"f'he fatt/water area)

Y — salt content after salting and storage
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Results

Mean Only X Xand Z

RMSEP 1.21 1.04 0.57

1.1

0.9

0.8~

RMSEP

0.7

0.6~

0.4
0

—©— 0 components in X*Z
—+8— 1 component in Xz

—¥— 2 components in X*Z | -

I‘Nu

Number of components in Z

all blocks

0.49

The different lines correspond

to different choice of components
for X*Z. The horizontal

axis represents the number

of components in Z

X fitted by LS
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Regression coefficients for X*Z based on PLS.
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Relations to standard Type | ANOVA

Sequential fitting
— Linear effects before interactions — the same idea as underlying Type | ANOVA.

PLS is equal to LS for the maximum number of components
— Direct generalisation of ANCOVA for data that can not be analysed by LS

Information about incremental contributions (improvements)

— Can decompose SS into a sum of contributions from each block and residuals
(orthogonal)

SS, =SSX +SSZ°" +SS(XZ) +SS,

Testing is more problematic since DF’s are not known for PLS
— Can use CV-ANOVA (possibly also the bootstrap)

Indahl, U.G. and Nees, T. (1998) Evaluation of alternative spectral feature extraction methods of textural |
images for multivariate modelling. Journal of Chemometrlcs 12,4, 261 278 - o
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"ANOVA’ table based on CV-ANOVA

Source RMSEP “‘MS” p-values
(SS/N) (2-way CV-
ANOVA)
First Matrix 288 2978228 0.017
Second Matrix 284 67671 0.725
RES 2095970
Total 467 5668190

First matrix - design, second matrix sp eC_t_fia| data .

20
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Interpretation

« The model gives independent PLS models, regression coefficients (original
or orthogonalised units) and prediction after each block

« Three plots based on these aspects

— Direct interpretation of PLS models
« Useful for outlier detection and also for interpretation

- PCP
« Method-independent based on regression coefficients
— After back-transformation to original units .

— Projection onto PC'’s of predicted Y : b
. Projections based on X and based on X,Z (compare)

Jf Nafi ma
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PCP for interpretation

. Basic idea. PLS components are introduced for prediction and do not
necessarily reflect the natural dimension of the problem.

—  Also sometimes difficult to interpret if many

. PCA of predicted Y
— Scores and Y-loadings
— The scores are linear functions of the independent variables (X- Ioadlngs)
— Linear functions of linear functions :
— The latter gives X-loadings (coefficients)
— Plot the usual way (as for PLS)

. If only one Y - corresponds to regression coeff_i_c’i'ents

Langsrud, @., Naes, T. (2003). Optimised score pIGt by
principal components of prediction. Chemolab. 68 61- 74



Example: Y- two-dimensional, X: NIR - Z: Raman

7 comp - NIR

100
Explained variance
Almost identical f Osite ordet
80 F
60
40
20 F
— Y-varl
— Y-var 2
8.[}! 0.5 1.0 1.5

5 comp - Raman

Y1 = PUFA%emul

unsaturated fat as % of sample

Y2 = %Pufa

unsaturated fat as % of fat
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Block 1: NIR — Block 2: Raman

PCP Y-loadings plot
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Raman and NIR X-loadings from PCP

Raman NIR

— PC2
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lllustration of projection approach
Plot of predicted values after X and after (X, Z) projected onto the PCA

space for predicted Y

Raman improves prediction along first component, %Pufa related
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SO-PLS for path modelling

» Methodology for linking several data blocks (manifest variables) according to a given
relation between the blocks (path diagram-arrow diagram)

— causal or other
« Structural equations modelling (SEM)
— Models based on two elements/parts

» Measurement model for each manifest block, outer relations (Factor anaIyS|s
model)

« Path model in the latent variables (inner relatlons)
— Joint set of regression models :

—_—_ / &/ Nofima



SO-PLS has also been used for path modelling

Smell after shaking

Global quality

View Tastlng

Nees, T. Tomic, T., Mevik, B-H. and Martens, H. (2011). Path modeIng by sequentlal
PLS regression. Journal of Chemometrics, 28-40 - . -

ﬂNo -

21.02.2012 28



New approach

Two elements (estimation and interpretation)
1. SO-PLS for each endogenous block — separate models

2. Principal components of prediction (PCP) for interpretation

Allows for
Different dimension in each block

Different information used for prediction and to be pre,d-iéia:'ed"*-in each block

N A/ W)
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Loadings —plots for Y and X, PCP

4
0.8
® Shaking 1
06 +
Shaking 5
04 + ® Shaking 9
® Shaking 8 Shaking 6

02 + haking 7
N
O
o

¢
® Shaking 3
-02 + ® Shaking 2 Bhaking 4
04 4
® Shaking 10
-06 t t t
-15 1 -05 0 0.5
PC1
21.02.2012 31

PC2

12

0.8

0.6

0.4

0.2

02

P Rest2

® Restl

° View2

o \/i

Y
VIEW]

® Rest5

+ © Rest3

® Rest4

-0.8 -0.6

0 02 04

ﬂ Nafi ma



PO-PLS

* Similar to SO-PLS, but focus on common varibility, not on additional variability

First define the common variability space as the space spanned by linear combinations with correlation close to 1
(canonical correlation).

— Subspace shared by the two blocks
— Reduce dimensionality first — stabilize or use regularised canonical correlation
* Then orthogonalise X and Z wrt. this space

* PLS of Y onto the orthogonalised versions of X and Z.
— Then LS of all three scores matrices

« Can be combined with SO-PLS. First XZcommon then X°'h and finally Zoh,
— All blocks orthogonal

* Also inviariant wrt. different scale of the blocks — and allows for different dimension,a}ity"(‘jf the blocks

Mage,l. Mevik, B-H. and Naes, T. (2008). Regression models with process variables and parallel bIocks
of raw material measurements. J. Chemometrics, 22, 443-456. :
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Closely related to confounding (or collinearity),
Confounding among blocks- not among variables

o

/

lllustration of common Var| a_b.i.l-i:?t y B

-"'J'Nbfi ma

21.02.2012 s



NIR and Raman loadings from PO-PLS

Canonical correlatioin equal to 0.9, PCA on each first

0.02
0.01
0.00 —0.4 :
— loadings from CCA
=055 200 400 600 800 1000 1200

-0.02

—0.03

—0.04

Most closely related to Pufa%emul

— loadi f CCA .
05 = . . . Can be seen from plots and correlatlons '.

o 50 100 150 200 250 300



Summary

 SO-PLS and PO-PLS: New methods for multi-block regression
— Explicit focus on additional and joint information

* Flexible in interpretation,

— PLS models, joint interpretation after back-transformation (PCP),
additional information - projections, outliers

« Invariant and different dimensionality
* Interactions can be allowed in SO-PLS

* Natural extension of Type | ANOVA
— Close relation to statistics, - - I —
— Fits to PLS philosophy of extracting mformatlon and usmg re5|duals "

« Challenge: better testing (bootstrap?) A
/' Nofima
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