La bibliothèque plsRglm, modèles linéaires généralisés PLS sous R

Frédéric Bertrand¹, Myriam Maumy-Bertrand¹, Nicolas Meyer ²

¹ Institut de Recherche Mathématique Avancée, Université de Strasbourg

 2 Laboratoire de Biostatistique - Faculté de Médecine - Université de Strasbourg

Chimiométrie 2009 — 30 Novembre 2009

Plan

- Introduction
- 2 Méthode
- Applications
- 4 Discussion

Contexte

La régression PLS est un outil important en chimiométrie

Contexte

La régression PLS est un outil important en chimiométrie

- en exploratoire
- en prédictif

Contexte

La régression PLS est un outil important en chimiométrie

- en exploratoire
- en prédictif
- en cas de colinéarité
- en raison des dimension de X, p >> n
- éventuellement des données manquantes
- ⇒ outils logiciels adéquats
 - SIMCA, The Unscrambler, SAS, divers packages @

Pourquoi un nouveau package R consacré à la PLS?

Pourquoi un nouveau package R consacré à la PLS?

limites des bibliothèques actuelles

Pourquoi un nouveau package R consacré à la PLS?

limites des bibliothèques actuelles

- pas de gestion des données manquantes (même si NIPALS)
- important en médecine (X-omics, allélotypage, data mining) p.ê. moins en chimiométrie

Pourquoi un nouveau package R consacré à la PLS?

limites des bibliothèques actuelles

- pas de gestion des données manquantes (même si NIPALS)
- important en médecine (X-omics, allélotypage, data mining)
 p.ê. moins en chimiométrie
- rareté des critères de sélection autre que VC par ex., LOO uniquement
- et VC uniquement sur données complètes
- pas de bootstrap ni de fonctions graphiques

Finalité de la bibliothèque plsRglm

- extension de la régression PLS au cas des modèles linéaires généralisés
- o notamment la régression logistique PLS (Bastien 2005)
- traitement des jeux de données incomplets par VC
- fonctions graphiques et bootstrap
- → illustré sur données d'allélotypage (Meyer et.al., 2009)

Plan

- Introduction
- 2 Méthode
- Applications
- 4 Discussion

Notations en PLS

- Soit **X** la matrice des prédicteurs $\mathbf{x}_1, \ldots, \mathbf{x}_j, \ldots, \mathbf{x}_p$ et \mathbf{y} .
- Reg. PLS : composantes orthogonales t_h , $max(cov(\mathbf{y}, \mathbf{t}_h))$
- $\mathbf{y} = \mathbf{T}^t c + \epsilon$, avec **T** la matrice des composantes
- En posant $\mathbf{T} = \mathbf{X}\mathbf{W}^*$, alors : $\mathbf{y} = \mathbf{X}\mathbf{W}^{*t}c + \epsilon$

Notations en PLS

- Soit **X** la matrice des prédicteurs $\mathbf{x}_1, \ldots, \mathbf{x}_j, \ldots, \mathbf{x}_p$ et \mathbf{y} .
- Reg. PLS : composantes orthogonales t_h , $max(cov(\mathbf{y}, \mathbf{t}_h))$
- $\mathbf{y} = \mathbf{T}^t c + \epsilon$, avec **T** la matrice des composantes
- En posant $\mathbf{T} = \mathbf{X}\mathbf{W}^*$, alors : $\mathbf{y} = \mathbf{X}\mathbf{W}^{*t}c + \epsilon$

$$\mathbf{y}_i = \sum_{h=1}^H \left(c_h w_{1h}^* x_{i1} + \dots + c_h w_{ph}^* x_{ip} \right) + \epsilon_i$$

où
$$H \leq \operatorname{rg}(X)$$

• Les coefficients $c_h w_{jh}^*$, où $1 \le j \le p$, (Wold *et al.*, 2001) : relation entre vecteur y et les x_i à travers les t_h .

Extension GLM de la PLS (1)

• réponse \mathbf{y} sur les $\mathbf{x}_1, \ldots, \mathbf{x}_j, \ldots, \mathbf{x}_p$ avec H composantes \mathbf{t}_h (Bastien *et al.* 2005)

$$g(\theta)_i = \sum_{h=1}^H c_h \mathbf{t}_h,$$

 $oldsymbol{ heta}$: espérance ou vecteur des probabilités d'une loi discrète et

$$\mathbf{t}_h = w_{1h}^* x_{i1} + \cdots + w_{ph}^* x_{ip}.$$

- fonction de lien $g(\theta)$ selon **y** et qualité de l'ajustement du modèle aux données.
- les composantes PLS \mathbf{t}_h sont orthogonales.

Extension GLM de la PLS (2)

- pour obtenir w, on remplace
 la regression linéaire simple (itérative)
 - ightarrow la régression généralisée
- \Rightarrow calculer le coefficient a_{1j} de \mathbf{x}_j dans la régression linéaire généralisée de \mathbf{y} sur chaque prédicteur $\mathbf{x}_j, 1 \leqslant j \leqslant p$.
 - idem pour c et les composantes :

Extension GLM de la PLS (2)

- pour obtenir w, on remplace
 la regression linéaire simple (itérative)
 - → la régression généralisée
- \Rightarrow calculer le coefficient a_{1j} de \mathbf{x}_j dans la régression linéaire généralisée de \mathbf{y} sur chaque prédicteur \mathbf{x}_j , $1 \leqslant j \leqslant p$.
 - idem pour c et les composantes :
 - régression généralisée simple
 - → régression généralisée multiple.

Extension GLM de la PLS (2)

première composante normer le vecteur $a_1: w_1 = a_1/||a_1||$, puis calculer la composante

$$\mathbf{t}_1 = 1/({}^t w_1 w_1) \mathbf{X} w_1$$

 h^{eme} composante calcul du coef a_{hj} de \mathbf{x}_j dans la reg. lin. génér. de \mathbf{y} sur $\mathbf{t}_1, \ldots, \mathbf{t}_{h-1}$ et \mathbf{x}_j

- normer le vecteur colonne a_h : $w_h = a_h/||a_h||$
- calculer la matrice résiduelle X_{h-1} de la régression linéaire de X sur $\mathbf{t}_1, \ldots, \mathbf{t}_{h-1}$, puis calculer la composante

$$\mathbf{t}_h = 1/({}^t w_h w_h) \mathbf{X}_{h-1} w_h.$$

ullet exprimer la composante $oldsymbol{t}_h$ en termes de prédicteurs $oldsymbol{X}$:

$$\mathbf{t}_h = \mathbf{X} w * h.$$

adaptation en cas de données incomplètes

Bootstrap dans les reg PLS

On suppose avoir retenu un nombre adéquat de composantes dans PLS1 de \mathbf{Y} sur $\mathbf{x}_1, \ldots, \mathbf{x}_j, \ldots, \mathbf{x}_p$.

- suivant Lazraq et al. (2003)
- pour faire des intervalles et tests bootstrap
- construction des IC avec plusieurs variantes
- normaux, percentiles ou BCa (Efron et Tibshirani 1993 ou Davison et Hinkley 1997).
- repose sur package boot

Bootstrap dans les reg PLS-GLM

On retient m composantes dans une reg PLS GLM.

- Soit F_(T|y) la fonction de répartition empirique étant donnée
 T formée des m composantes PLS et la réponse y.
- **Étape 1.** Tirer B échantillons de $\widehat{F}_{(T|y)}$.
- **Étape 2.** Pour tout b = 1, ..., B, calculer :

$$c^{(b)} = ({}^{t}\mathbf{T}^{(b)}\mathbf{T}^{(b)})^{-1t}\mathbf{T}^{(b)}\mathbf{y}^{(b)}$$
 et $b^{(b)} = \mathbf{W}^{*}c^{(b)}$,

- où $[\mathbf{T}^{(b)}, \mathbf{y}^{(b)}]$ est le b-ème échantillon bootstrap
 - $c^{(b)}$ coefficients des composantes
 - $b^{(b)}$ coefficients des p prédicteurs d'origine pour cet échantillon
 - W* est la matrice fixe des poids des prédicteurs dans le modèle d'origine (m composantes)

Bootstrap dans les reg PLS-GLM

- **Étape 3.** Pour chaque j, Φ_{b_j} approximation de Monte-Carlo de F de la statistique bootstrap de b_j .
 - Pour chaque b_j , boîtes à moustaches et IC à partir des percentiles de Φ_{b_i} .
 - Un intervalle de confiance peut être défini par $I_j(\alpha) = \Phi_{b_i}^{-1}(\alpha), \Phi_{b_i}^{-1}(1-\alpha)$
 - où $\Phi_{b_j}^{-1}(\alpha)$ et $\Phi_{b_j}^{-1}(1-\alpha)$ sont les valeurs obtenues à partir de la fonction de répartition de la statistique bootstrap, niveau nominal de confiance de niveau $100(1-2\alpha)\%$

Le contenu des objets PLS du package

donne tous les résultats classiques nécessaires à la bonne interprétation d'un modèles PLS

Le contenu des objets PLS du package

donne tous les résultats classiques nécessaires à la bonne interprétation d'un modèles PLS pour réaliser de l'inférence et les cartes.

Le contenu des objets PLS du package

donne tous les résultats classiques nécessaires à la bonne interprétation d'un modèles PLS pour réaliser de l'inférence et les cartes.

- w, ||w||, w*, t_h , p, c,
- \hat{Y} , \hat{Y}_{resid} ,
- YNA, residY, ExpliX, na.miss.X, XXNA, residXX, PredictY,
- press.ind, press.tot, ttPredictY, typeVC, computed nt,
- CoeffCFull, CoeffConstante, Std.Coeffs, press.ind2,
- RSSresidY, Yresidus, RSS, residusY, AIC.std, AIC,
- Nombre de mal classés, Proba d'affectation à une classe,
- standard/missingdata/adaptative
- R^2 residY, R^2 , PRESS, press.tot2, Q^2 , Q^2 lim, Q^2 cum,
- infos relatives à la VC, critères d'information

Plan

- 1 Introduction
- 2 Méthode
- 3 Applications
- 4 Discussion

Données d'allélotypage

- données génétiques
- microsatellites : structures répétitives marqueurs de l'ADN
- X, p variables, mesures binaires : altération présente / absente
- y binaire (stade ou localisation métastase)
 - $\approx 30\%$ de données manquantes
 - $p \simeq n$ ou p > n, colinéarité

Données d'allélotypage

- données génétiques
- microsatellites : structures répétitives marqueurs de l'ADN
- X, p variables, mesures binaires : altération présente / absente
- y binaire (stade ou localisation métastase)
 - $\approx 30\%$ de données manquantes
 - $p \simeq n$ ou p > n, colinéarité

Exemp. cancer du colon, série de 33 microsatellites

- objectif descriptif et explicatif
- prédire stade de progression d'un cancer en 2 ou 4 classes
 - → reg log binomiale/ordinale/multinomiale
- origine du package
- ici sur données complétées

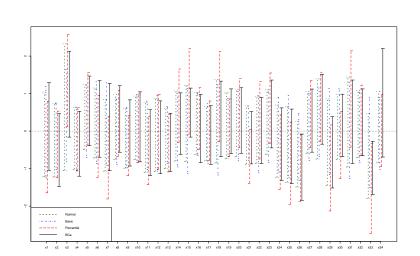
Nbre composantes	0	1	2	3	4	5
AIC	145, 83	118, 14	109, 96	105, 16	103,84	104, 73
BIC	148, 47	123, 43	117, 89	115, 74	117, 06	120, 60
Mal Classé	49	28	26	22	21	21
Préd. Significatifs	2	1	0	0	0	0
Mal Classé (10-CV)		64	62	57	61	62
$Q^2 \chi^2$ (10-CV)		-2,56	-23,90	$-1,00 \cdot 10^{3}$	$-1, 17 \cdot 10^5$	$-4, 12 \cdot 10^7$
χ^2 Pearson	104,00	100, 54	99, 18	123, 38	114, 78	98,88

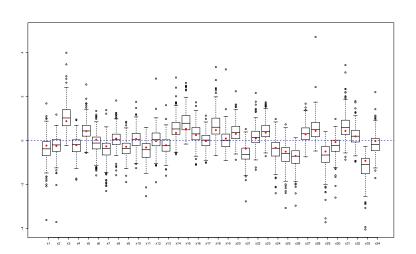
Table: Résultats de la validation croisée, allélotypage, k = 10

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 250 bootstrap replicates

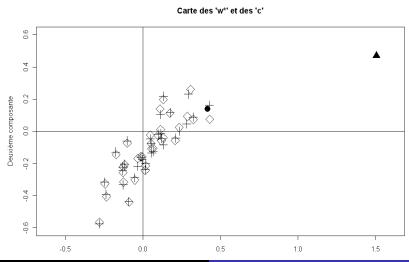
```
CALL:
boot.ci(boot.out = aze_compl.boot, conf = c(0.9, 0.95),
type = c("norm", "basic", "perc", "bca"), index = 33)
Intervals:
Level Normal
                            Basic
90% (-1.0492, -0.0312) (-1.0193, 0.0350)
95% (-1.1467, 0.0663) (-1.0933, 0.2430)
Level Percentile
                             BCa
90% (-1.2515, -0.1971) (-1.1059, -0.1235)
95% (-1.4594, -0.1231) (-1.2855, -0.0875)
Calculations and Intervals on Original Scale
Some basic intervals may be unstable
Some percentile intervals may be unstable
Some BCa intervals may be unstable
```

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ





Carte des w*,c (PLS et PLS logistique), données d'allélotypage.



Plan

- 1 Introduction
- 2 Méthode
- 3 Applications
- 4 Discussion

Points forts de la bibliothèque

- modèles de régression PLS et PLS-GLM
- sur données complètes et incomplètes
- choix du nombre de composantes par différents critères
 - AIC / BIC
 - selon significativité des coefficients dans t_h
 - Q2 par validation croisée, même sur données incomplètes
- validation croisée « repeated k-folds cross-validation »
- bootstrap des coef des prédicteurs
 - PLS et PLS-GLM (reg logistique, survie, loi gamma, loi beta-binomiale etc).
 - données complètes et incomplètes

Disponibilité de plsRglm

- package fonctionnel
- page d'aide en cours de finalisation
- disponible sur le site

```
http://udsmed.u-strasbg.fr/labiostat/
```

• en attendant de le mettre sur le CRAN

Bibliographie

- 1 R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2008. http://www.R-project.org.
- 2 Bastien, Ph., Esposito Vinzi, V. & Tenenhaus, M.: PLS generalized linear regression, Computational Statistics & Data Analysis, 48(1), 17-46, 2005.
- 3 Kettaneh-Wold, N.: Analysis of mixture data with partial least squares, Chemometrics & Intelligent Laboratory Systems, 14, 57-69, 1992.
- 4 Meyer, N., Maumy-Bertrand, M. & Bertrand, F.: Comparaison de variantes de régressions logistiques PLS et de régression PLS sur variables qualitatives: application aux données d'allélotypage, Prépublication de l'IRMA, 2009.
- 5 Höskuldsson, A.: PLS regression methods, Journal of Chemometrics, 2, 211-228, 1988.
- 6 Wold, S., Sjöström, M. & Eriksson, L.: PLS-regression: a basic tool of Chemometrics, Chemometrics and Intelligent Laboratory Systems, 58, 109-130, 2001.
- 7 Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. & Levine A. J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissue probed by oligonucleotide arrays, Proc. Natl. Acad. Sci. USA, 96, 6745-6750, 1999.
- 8 Varmuza, K. & Filzmoser, P.: Introduction to Multivariate Statistical Analysis in Chemometrics, CRC Press, Boca Raton, USA, 2009.
- 9 Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikström, C. & Wold, S.: Multi- and Megavariate Data Analysis, Principles and Applications. Umetrics Academy, Umeå, Sweden, 2001.

